29 Np-hard Problems 29.1 'efficient' Problems
نویسندگان
چکیده
A generally-accepted minimum requirement for an algorithm to be considered ‘efficient’ is that its running time is polynomial: O(nc) for some constant c, where n is the size of the input.1 Researchers recognized early on that not all problems can be solved this quickly, but we had a hard time figuring out exactly which ones could and which ones couldn’t. there are several so-called NP-hard problems, which most people believe cannot be solved in polynomial time, even though nobody can prove a super-polynomial lower bound. Circuit satisfiability is a good example of a problem that we don’t know how to solve in polynomial time. In this problem, the input is a boolean circuit: a collection of AND, OR, and NOT gates connected by wires. We will assume that there are no loops in the circuit (so no delay lines or flip-flops). The input to the circuit is a set of m boolean (TRUE/FALSE) values x1, . . . , xm. The output is a single boolean value. Given specific input values, we can calculate the output of the circuit in polynomial (actually, linear) time using depth-first-search, since we can compute the output of a k-input gate in O(k) time.
منابع مشابه
Lecture 29: Np-hard Problems [fa'12] 29 Np-hard Problems 29.1 'efficient' Problems
A generally-accepted minimum requirement for an algorithm to be considered ‘efficient’ is that its running time is polynomial: O(nc) for some constant c, where n is the size of the input.1 Researchers recognized early on that not all problems can be solved this quickly, but we had a hard time figuring out exactly which ones could and which ones couldn’t. there are several so-called NP-hard prob...
متن کاملLecture 29: Np-hard Problems [fa'13] 29 Np-hard Problems 29.1 a Game You Can't Win
A salesman in a red suit who looks suspiciously like Tom Waits presents you with a black steel box with n binary switches on the front and a light bulb on the top. The salesman tells you that the state of the light bulb is controlled by a complex boolean circuit—a collection of AND, OR, and NOT gates connected by wires, with one input wire for each switch and a single output wire for the light ...
متن کاملParallelizing Assignment Problem with DNA Strands
Background:Many problems of combinatorial optimization, which are solvable only in exponential time, are known to be Non-Deterministic Polynomial hard (NP-hard). With the advent of parallel machines, new opportunities have been emerged to develop the effective solutions for NP-hard problems. However, solving these problems in polynomial time needs massive parallel machines and ...
متن کاملHighly parallel approximations for inherently sequential problems
In this work we study classes of optimization problems that require inherently sequential algorithms to solve exactly but permit highly parallel algorithms for approximation solutions. NC is the class of computational problems decidable by a logarithmic space uniform family of Boolean circuits of bounded fan-in, polynomial size, and polylogarithmic depth. Such problems are considered both “effi...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کامل